3.591 \(\int \frac {(a+b \sinh ^{-1}(c x))^2}{\sqrt {d+i c d x} \sqrt {f-i c f x}} \, dx\)

Optimal. Leaf size=59 \[ \frac {\sqrt {c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )^3}{3 b c \sqrt {d+i c d x} \sqrt {f-i c f x}} \]

[Out]

1/3*(a+b*arcsinh(c*x))^3*(c^2*x^2+1)^(1/2)/b/c/(d+I*c*d*x)^(1/2)/(f-I*c*f*x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.30, antiderivative size = 59, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {5712, 5675} \[ \frac {\sqrt {c^2 x^2+1} \left (a+b \sinh ^{-1}(c x)\right )^3}{3 b c \sqrt {d+i c d x} \sqrt {f-i c f x}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSinh[c*x])^2/(Sqrt[d + I*c*d*x]*Sqrt[f - I*c*f*x]),x]

[Out]

(Sqrt[1 + c^2*x^2]*(a + b*ArcSinh[c*x])^3)/(3*b*c*Sqrt[d + I*c*d*x]*Sqrt[f - I*c*f*x])

Rule 5675

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSinh[c*x]
)^(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && GtQ[d, 0] && NeQ[n, -1
]

Rule 5712

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(q_), x_Symbol] :>
Dist[((d + e*x)^q*(f + g*x)^q)/(1 + c^2*x^2)^q, Int[(d + e*x)^(p - q)*(1 + c^2*x^2)^q*(a + b*ArcSinh[c*x])^n,
x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 + e^2, 0] && HalfIntegerQ[p,
q] && GeQ[p - q, 0]

Rubi steps

\begin {align*} \int \frac {\left (a+b \sinh ^{-1}(c x)\right )^2}{\sqrt {d+i c d x} \sqrt {f-i c f x}} \, dx &=\frac {\sqrt {1+c^2 x^2} \int \frac {\left (a+b \sinh ^{-1}(c x)\right )^2}{\sqrt {1+c^2 x^2}} \, dx}{\sqrt {d+i c d x} \sqrt {f-i c f x}}\\ &=\frac {\sqrt {1+c^2 x^2} \left (a+b \sinh ^{-1}(c x)\right )^3}{3 b c \sqrt {d+i c d x} \sqrt {f-i c f x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.85, size = 168, normalized size = 2.85 \[ \frac {a^2 \log \left (c d f x+\sqrt {d} \sqrt {f} \sqrt {d+i c d x} \sqrt {f-i c f x}\right )}{c \sqrt {d} \sqrt {f}}+\frac {a b \sqrt {c^2 x^2+1} \sinh ^{-1}(c x)^2}{c \sqrt {d+i c d x} \sqrt {f-i c f x}}+\frac {b^2 \sqrt {c^2 x^2+1} \sinh ^{-1}(c x)^3}{3 c \sqrt {d+i c d x} \sqrt {f-i c f x}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcSinh[c*x])^2/(Sqrt[d + I*c*d*x]*Sqrt[f - I*c*f*x]),x]

[Out]

(a*b*Sqrt[1 + c^2*x^2]*ArcSinh[c*x]^2)/(c*Sqrt[d + I*c*d*x]*Sqrt[f - I*c*f*x]) + (b^2*Sqrt[1 + c^2*x^2]*ArcSin
h[c*x]^3)/(3*c*Sqrt[d + I*c*d*x]*Sqrt[f - I*c*f*x]) + (a^2*Log[c*d*f*x + Sqrt[d]*Sqrt[f]*Sqrt[d + I*c*d*x]*Sqr
t[f - I*c*f*x]])/(c*Sqrt[d]*Sqrt[f])

________________________________________________________________________________________

fricas [F]  time = 0.54, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {i \, c d x + d} \sqrt {-i \, c f x + f} b^{2} \log \left (c x + \sqrt {c^{2} x^{2} + 1}\right )^{2} + 2 \, \sqrt {i \, c d x + d} \sqrt {-i \, c f x + f} a b \log \left (c x + \sqrt {c^{2} x^{2} + 1}\right ) + \sqrt {i \, c d x + d} \sqrt {-i \, c f x + f} a^{2}}{c^{2} d f x^{2} + d f}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2/(d+I*c*d*x)^(1/2)/(f-I*c*f*x)^(1/2),x, algorithm="fricas")

[Out]

integral((sqrt(I*c*d*x + d)*sqrt(-I*c*f*x + f)*b^2*log(c*x + sqrt(c^2*x^2 + 1))^2 + 2*sqrt(I*c*d*x + d)*sqrt(-
I*c*f*x + f)*a*b*log(c*x + sqrt(c^2*x^2 + 1)) + sqrt(I*c*d*x + d)*sqrt(-I*c*f*x + f)*a^2)/(c^2*d*f*x^2 + d*f),
 x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \operatorname {arsinh}\left (c x\right ) + a\right )}^{2}}{\sqrt {i \, c d x + d} \sqrt {-i \, c f x + f}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2/(d+I*c*d*x)^(1/2)/(f-I*c*f*x)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arcsinh(c*x) + a)^2/(sqrt(I*c*d*x + d)*sqrt(-I*c*f*x + f)), x)

________________________________________________________________________________________

maple [F]  time = 0.34, size = 0, normalized size = 0.00 \[ \int \frac {\left (a +b \arcsinh \left (c x \right )\right )^{2}}{\sqrt {i c d x +d}\, \sqrt {-i c f x +f}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsinh(c*x))^2/(d+I*c*d*x)^(1/2)/(f-I*c*f*x)^(1/2),x)

[Out]

int((a+b*arcsinh(c*x))^2/(d+I*c*d*x)^(1/2)/(f-I*c*f*x)^(1/2),x)

________________________________________________________________________________________

maxima [A]  time = 0.59, size = 53, normalized size = 0.90 \[ \frac {b^{2} \operatorname {arsinh}\left (c x\right )^{3}}{3 \, \sqrt {d f} c} + \frac {a b \operatorname {arsinh}\left (c x\right )^{2}}{\sqrt {d f} c} + \frac {a^{2} \operatorname {arsinh}\left (c x\right )}{\sqrt {d f} c} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsinh(c*x))^2/(d+I*c*d*x)^(1/2)/(f-I*c*f*x)^(1/2),x, algorithm="maxima")

[Out]

1/3*b^2*arcsinh(c*x)^3/(sqrt(d*f)*c) + a*b*arcsinh(c*x)^2/(sqrt(d*f)*c) + a^2*arcsinh(c*x)/(sqrt(d*f)*c)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {{\left (a+b\,\mathrm {asinh}\left (c\,x\right )\right )}^2}{\sqrt {d+c\,d\,x\,1{}\mathrm {i}}\,\sqrt {f-c\,f\,x\,1{}\mathrm {i}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asinh(c*x))^2/((d + c*d*x*1i)^(1/2)*(f - c*f*x*1i)^(1/2)),x)

[Out]

int((a + b*asinh(c*x))^2/((d + c*d*x*1i)^(1/2)*(f - c*f*x*1i)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b \operatorname {asinh}{\left (c x \right )}\right )^{2}}{\sqrt {i d \left (c x - i\right )} \sqrt {- i f \left (c x + i\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asinh(c*x))**2/(d+I*c*d*x)**(1/2)/(f-I*c*f*x)**(1/2),x)

[Out]

Integral((a + b*asinh(c*x))**2/(sqrt(I*d*(c*x - I))*sqrt(-I*f*(c*x + I))), x)

________________________________________________________________________________________